
Introduction to R

Mauricio Romero

(Based on Nick C. Huntington-Klein’s notes)

1

Getting familiar with R

� R is a language for working with data

� RStudio is an environment for working with that language

� Excel/Sheets is a great tool for accountants, not for working with data

� Learning to program is a highly valuable skill (regardless of what you want to do)

� Programming: a language to communicate with the computer

� Programming requires you to be very precise: Computer will do exactly as told

2

Introduction to R

RStudio – The Basics

Objects and Functions

3

Introduction to R

RStudio – The Basics

Objects and Functions

4

RStudio Panes

� Console

� Environment Pane

� Browser Pane

� Source Editor

5

RStudio Panes

Source editor

Console

Enviroment

Browser

6

Console

� Typically bottom-left

� You can type in code and have it run immediately

� It will also show any output or errors

7

Let’s copy/paste some code in there to run

#Generate 500 heads and tails

data <- sample(c("Heads","Tails"),500,replace=TRUE)

#Calculate the proportion of heads

mean(data=="Heads")

#This line should give an error - it didn ’t work!

data <- sample(c("Heads","Tails"),500,replace=BLUE)

#This line should give a warning

#It did SOMETHING but maybe not what you want

mean(data)

#This line won ’t give an error or a warning

#But it’s not what we want!

mean(data=="heads")

8

Console

� See the code that we’ve run

� See the output of that code, if any

� See any errors or warnings (in red)

� Errors mean it didn’t work

� Warnings mean it maybe didn’t work.

� Just because there is no error or warning does not mean it did work! Always check

9

RStudio Panes

10

Environment pane

� Typically is on the top-right

� Two important tabs: Environment and History

� History: Log of what we have done

� Can re-run commands by double-clicking them or hitting Enter

� Send to console with double-click/enter

� Send to source pane with Shift+double-click/Enter

� Or use ”To Console” or ”To Source” buttons

� Environment: Objects we have created

� All the objects we have in memory

� For example, we created the “data” object, so we can see that in Environment

� It shows us lots of useful information about that object too (e.g., size)

� You can erase everything with the little broom (equivalent to “rm(list=ls())”)

11

Browser Pane

� Typically bottom-right

� Mostly, outcome of what you do will be seen here

12

Browser Pane: Files Tab

� Files Tab

� Basic file browser

� Handy for opening up files

� Can also help you set the working directory (same as “setwd(file path)”)

� Go to folder

� In menu bar, Session

� Set Working Directory

� To Files Pane Location

13

Browser Pane: Plots and Viewer tabs

� When you create something that must be viewed, like a plot, it will show up here

� For example:

data(LifeCycleSavings)

plot(density(LifeCycleSavings$pop75),

main=’Percent of Population over 75’)

� For example (using ggplot):

data(LifeCycleSavings)

library(ggplot2)

ggplot(LifeCycleSavings ,aes(x=pop75))+

stat_density(geom=’line’)+

ggtitle(’Percent of Population over 75’)

� “Export” button here - save plots you’ve created (better to do this via code)

14

0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Percent of Population over 75

N = 50 Bandwidth = 0.5312

D
en

si
ty

15

Browser Pane: Packages Tab

� Install new packages and load them in

� We’ll be talking more about packages later

� I generally avoid this tab; better to do this via code

� Why? Replicability!

� A VERY important reason to use code and not the GUI or Excel

� Make sure your future self (or someone else) knows how to use your code

� “Update” button (check for package updates)

16

Browser Pane: Help Tab

� This is where help files appear when you ask for them

� You can use the search bar , or “help()” in the console

� More on this later

17

Source Pane

� Top left

� You should be working with code FROM THIS PANE, not the console!

� Why? Replicability!

� Also, COMMENTS! USE THEM! PLEASE! “#” lets you write a comment

� Switch between tabs like a internet browser

18

Running Code from the Source Panel

� Select a chunk of code and hit the “Run” button (ctrl+enter)

� Going one line at a time lets you check for errors more easily

19

Running Code from the Source Panel

data(mtcars)

mean(mtcars$mpg)

mean(mtcars$wt)

372+565

log(exp(1))

2^9

(1+1)^9

20

21

Autocomplete

� RStudio comes with autocomplete!

� Typing in the Source Pane or the Console, it will try to fill in things for you

� Command names (shows the syntax of the function too!)

� Object names from your environment

� Variable names in your data

� Try redoing the code we just did, typing it out

22

Help

� Autocomplete is one way that RStudio tries to help you out

� The way that R helps you out the most is with the documentation

� When you start doing serious programming, the most important skills are:

� Knowing to read documentation

� Knowing to search the internet for help

23

Help

� You can get the documentation on most R objects using the “help()” function

� “help(mean)”, for example, will show you:

� What the function is

� The syntax for the function (i.e., what it takes and what it spits out)

� The available options for the function

� Other, related functions, like “weighted.mean”

� Ideally, some examples of proper use

� Not just for functions/commands - some data sets too! Try “help(mtcars)”

24

Searching the Internet

� Professional programmers spend a lot of time looking up how to do stuff online

� Just Google (or whatever) what you need! There will usually be a resource

� R-bloggers, Quick-R, StackOverflow

� Or just Google. Try including “R” and the name of what you want in the search

� If “R” isn’t turning up anything, try “Rstats” or “R Project”

� Ask on Twitter with ‘#rstats‘

� Ask on StackExchange or StackOverflow

25

Searching the Internet

� We’ve used data sets LifeCycleSavings and mtcars with the data() function

� What data sets can we get this way?

� Let’s try “help(data)”

� Let’s try searching the internet

26

Introduction to R

RStudio – The Basics

Objects and Functions

27

Introduction to R

RStudio – The Basics

Objects and Functions

28

R is an object oriented programming language

� What can you do in R?

� Create objects

� Look at objects

� Manipulate objects

� That’s it. That’s all. That’s what R does.

29

Creating a Basic Object

� Let’s create an object. Do this with the assignment operator “<-” (a.k.a., “gets”)

a <- 4

� Creates an object called ‘a’

� What is that object? It’s a number

� Specifically, it’s the number 4

� We know that because we took that 4 and we shoved it into ‘a’

� Why store it as an object? To look at it and manipulate it

� We can do more complex calculations before storing it, too.

b <- sqrt(16)+10

30

Looking at Objects

� We can see this object that we’ve created in the Environment pane

� Putting that object on a line by itself in R will show us what it is

a

b

31

32

Looking at Objects

� We can create an object and look at it in the console without storing it

3

a+b

� We can run objects through functions to look at them in different ways

#What does a look like if we take the square root of it?

sqrt(a)

#What does it look like if we add 1 to it?

a + 1

#If we look at it, do we see a number?

is.numeric(a)

33

34

Manipulating Objects

#Looked like with 1 added , but a wasn ’t changed

a

#Let ’s save a+1 as something else

b <- a + 1

#And let ’s overwrite a with its square root

a <- sqrt(a)

a

b

35

36

Some Notes

� Even though we changed ‘a‘, ‘b‘ was already set using the old value of ‘a‘,

� So was still ‘4+1=5‘, not ‘2+1=3‘

� ‘a‘ basically got reassigned with ‘<-’. That’s how we got it to be ‘2‘

� Everything in R is just manipulating objects but with more complex objects and

more complex functions!

37

Types of Objects

� We already determined that ‘a‘ was a number

� What else could it be? What other kinds of variables are there?

� Some basic object types:

� Numeric: A single number

� Character: A string of letters, like ‘’hello’‘

� Logical: ‘TRUE‘ or ‘FALSE‘ (or ‘T‘ or ‘F‘)

� Factor: A category, like ‘’left handed’, ’right handed’, or ’ambidextrous’‘

� Vector: A collection of objects of the same type

38

Characters

� A character object is a piece of text, held in quotes like ‘’ ” or ‘” ”’

� For example, maybe you have some data on people’s addresses

address <- "321 Fake St."

address

is.character(address)

39

40

Logical

� Logicals are binary: TRUE or FALSE. Lots of data is binary

c <- TRUE

is.logical(c)

is.character(a)

is.logical(is.numeric(a))

� Logicals are used a lot in programming too to evaluate whether a conditions hold

a > 100

a > 100 | b == 5

� ‘&‘ is AND

� ‘|‘ is OR
� To check equality use ‘==‘, not ‘=‘

� ‘>=‘ is greater than OR equal to, similarly for ‘<=‘

41

42

Logical

� They are also equivalent to ‘TRUE=1‘ and ‘FALSE=0‘ which comes in handy

� We can use ‘as‘ functions to change object type (although for ‘T=1, F=0‘ it does

it automatically)

as.numeric(FALSE)

TRUE + 3

43

44

Let’s think about what these lines might do

is.logical(is.numeric(FALSE))

is.numeric(2) + is.character(’hello ’)

is.numeric(2) & is.character(3)

TRUE | FALSE

TRUE & FALSE

45

46

Factors

� Factors are categorical variables (i.e., mutually exclusive groups)

� They look like strings, but they’re more like logicals with more than two levels

� Factors have levels showing the possible categories you can be in

e <- as.factor(’left -handed ’)

levels(e) <- c(’left -handed ’,’right -handed ’,’ambidextrous ’)

e

47

48

Vectors

� Data is basically a bunch of variables all put together

� A lot of R works with vectors, which are a bunch of objects all put together!

� Use ‘c()‘ (concatenate) to put objects of the same type together in a vector

� Use square brackets to pick out parts of the vector

d <- c(5,6,7,8)

c(is.numeric(d),is.vector(d))

d[2]

49

50

Vectors

� Statistics helps us make sense of lots of different measurements of the same thing

� Thus, lots of statistical functions look at multiple objects

mean(d)

c(sum(d),sd(d),prod(d))

51

52

Vectors

� We can perform the same operation on all parts of the vector at once!

d + 1

d + d

d > 6

53

54

Vectors

� Factors make a lot more sense as a vector

continents <- as.factor(c(’Asia’,’Asia’,’Asia’,

’N America ’,’Europe ’,

’Africa ’,’Africa ’))

table(continents)

continents[4]

55

56

Value matching

� Create logicals seeing if a value matches ANY value in a vector with ‘%in%’

3 %in% c(3,4)

c(’Nick’,’James ’) %in% c(’James’,’Andy’,’Sarah’)

57

58

Some basic vector manipulations

1:8

rep(4,3)

rep(c(’a’,’b’),4)

numeric(5)

character(6)

sample(1:20,3)

sample(c("Heads","Tails"),6,replace=TRUE)

59

60

Vector Test

� If we do ‘f <- c(2,3,4,5)‘, then what will the output of these be?

f^2

f + c(1,2,3,4)

c(f,6)

is.numeric(f)

mean(f >= 4)

f*c(1,2,3)

length(f)

length(rep(1:4,3))

f/2 == 2 | f < 3

as.character(f)

f[1]+f[4]

c(f,f,f,f)

f[f[1]]

f[c(1,3)]

f %in% (1:4*2) 61

62

Homework

� Create a factor that randomly samples six ‘’Male’‘ or ‘’Female’‘ people.

� Add up all the numbers from 18 to 763, then get the mean

� What happens if you make a list with a logical, a numeric, AND a string in it?

� Figure out how to use ‘paste0()‘ to turn ‘c(’a’,’b’)‘ into ‘’ab’‘

� Use ‘[]‘ to turn ‘h <- c(10,9,8,7)‘ into ‘c(7,8,10,9)‘ and call it ‘j‘

� (Several ways) Create a vector with eleven 0’s, then a 5.

� Use ‘floor()‘ or ‘%%‘ to count how many multiples of 4 between 433 and 899

63

	RStudio – The Basics

